°ü·Ã ÀÚ·á >>> °¡°ø ¹× ó¸® >>>

 

 11. ´Ù°¢¿øÇü ¿¬¸¶°¡°ø ´ÙÀ̾î¸ÕµåÀÇ ±¤ÇÐ(ÎÃùÊ) (The Optics of Brilliant-Cut Diamonds)

We are thankful to Mr. Matsubara, President of Shinko Co., Ltd. for his contribution to the uploading of this paper.
<GemTec>

By W.R. Eulitz

Editor's Note : Dr.W.R. Eulitz, a noted physicist and mathematician is a part of the United States space team at Huntsville, Alabama, that is led by Dr. Werner Von Braun. Dr. Eulitz's study of gemology is a hobby. The proportions of the round brilliant fascinated him and led into the extensive research that culminated in this paper

The introduction of the triple-cut diamond by Peruzzi a few centuries ago caused by a sensation in the diamond-cutting industry. The fashionable language of those days, French, called the appearance of Peruzzi diamonds "brilliant", which means excellent superb, splendid, magnificent. Later, this attribute typified the stone itself: a diamond cut in Peruzzi style was simply a "brilliant".

The brilliant of today is, in principle, the same as the Peruzzi brilliant, with the only difference being that the squared format of the girdle has been rounded and the angles between the facets have been modified. The basic centro-symmetric design, crown and pavilion fashioned with a total of 58 facets, did not change.

During the centuries, the cutting industry learned by experience that the beautiful effect of a brilliant depends primarily on the inclination of the main facets (bezels and pavilion) to the girdle plane. The optimum angles, however, remained a puzzle. And even today, there is no general agreement about the proper angles. Commonly, it is considered a delicate art to cut the stone in such a way that the result is optimum beauty.

During the first three decades of this century, attempts have been made to calculate the proper proportions for the brilliant-cut diamond. But all these calculations did not provide any more brilliancy than a few practitioners obtained by intuition. Results obtained by different authors disagreed, partially because they judged brilliancy by different standards.

In 1919, Marcel Tolkowsky published a book, Diamond Design (out of print). By trial-and-error calculations, considering the critical angle as the limit for refraction and reflection, Tolkowsky arrived at proportions that are very close to what is supposed to be the perfect brilliant cut by long-experienced diamond cutters striving for maximum beauty, rather than maximum weight retention. His figures are accepted in this country by the GIA as the standard proportions of a perfect brilliant. They are, with the other suggestions in parenthesis for comparison: pavilion angel ¥á=40.75° (40.8°); crown angle, ¥â=34.5° (33.2); table diameter, 53%(56%); pavilion height, 43.1%(43.2%); crown height, 16.2%(14.4%); total depth, 60.3%(58.6%). Actually, all these figures vary widely, because almost every cutters claims his products are the ultimate of the art. This widespread disagreement stimulated a new study of the problem from another point of view.

It is well known that the beautiful appearance of a brilliant is the result of a special effect of light, or, more precisely, it is a combination of the quantity and quality of light reflected by the stone. A brilliant is irradiated in any imaginable direction from the outside and these light rays can enter the stone through the table as the main "window". It also is well known that all these rays change their direction when entering the stone; they are refracted.

So far, there is no particular phenomenon, because light penetrates a great number of materials and is thereby refracted. What the appearance of a brilliant-cut stone, especially diamond, makes so outstanding depends primarily on the form in which the stone is cut and in a secondary respect, on the high refractive index of diamond. A diamond cut as a flat plate with two parallel planes would never have the effect of a brilliant, although the high refractive index exists.

Hence, the primary question is: what happens to the collected light inside the stone? What are the prerequisites for light rays to be reflected to the outside in the direction to the observer? Are there any general rules that govern such an optical system, and, if so, can such rules serve to tell the degree of brilliancy of a stone from its external shape?

To discern this, we will, in the first place, consider the paths of light rays inside the stone and, subsequently, the effect toward the outside. For better understanding, the important symbols used in the following discussion may be explained beforehand.

ÆíÁýÀÚ ÁÖ : W.R. Eulitz¹Ú»ç´Â Àú¸íÇÑ ¹°¸®ÇÐÀÚÀÌÀÚ ¼öÇÐÀÚ·Î Werner Von Brawn ¹Ú»ç°¡ À̲ô´Â AlabamaÀÇ Huntsville¿¡ Àִ ¹Ì±¹ ¿ìÁÖ´ÜÀÇ ÀÏ¿øÀÌ´Ù. Eulitz¹Ú»çÀÇ º¸¼®ÇÐ ¿¬±¸´Â Ãë¹ÌÀÌ´Ù. ¿øÇü´Ù°¢(brilliant)ÀÇ ºñÀ²¿¡ ¸Å·áµÇ¾î ÀÌ ³í¹®¿¡¼­ ±× ÀýÁ¤¿¡ ´Ù´Ù¸¥ ±¤¹üÀ§ÇÑ ¿¬±¸¿¡ µé¾î°¬´Ù.


¼ö ¼¼±â Àü¿¡ Peruzzi¿¡ ÀÇÇؼ­ ¼Ò°³µÈ »ïÁß¿¬¸¶°¡°ø ´ÙÀ̾î¸Õµå´Â ´ÙÀ̾î¸Õµå ¿¬¸¶°¡°ø »ê¾÷¿¡ °¨µ¿À» ÀÏÀ¸Ä×´Ù. Peruzzi ´ÙÀ̾î¸ÕµåÀÇ ¿Ü°üÀ» ºÒ¾î·Î ÈǸ¢ÇÑ ÃÖ»óÀÇ, È­·ÁÇÑ, Àå·ÁÇÑ À̶ó´Â ¶æÀÎ ±× ´ç½ÃÀÇ À¯Çà¾î·Î "brilliant"¶ó°í ºÒ·¶´Ù. ÈÄ¿¡, ÀÌ ¼Ó¼ºÀº µ¹ ÀÚü¸¦ ´ëÇ¥ÇÏ°Ô µÇ¾ú´Ù: PeruzziÇüÅ·Π¿¬¸¶°¡°øµÈ ´ÙÀ̾î¸Õµå´Â ´Ü¼øÈ÷ ºê¸±¸®¾ðÆ®(brilliant)À̾ú´Ù.


¿À´Ã³¯ÀÇ ´Ù°¢¿øÇü(brilliant)´Â ¿øÄ¢ÀûÀ¸·Î Peruzzi ´Ù°¢¿øÇü°ú °°´Ù. ´Ü Çϳª ´Ù¸¥ °ÍÀº ȯ»óºÎÀÇ »ç°¢ÇüÅ°¡ µÕ±Û°Ô µÇ¾ú°í ÆнÃÆ®(facet)µé »çÀÌÀÇ °¢µéÀÌ ¹Ù²î¾ú´Ù. ¸ðµÎ 58°³ÀÇ ÆнÃÆ®µé·Î ÀÌ·ç¾îÁø, ±âÃÊÀûÀÎ Á᫐ ´ëĪÀûÀÎ °í¾È, °üºÎ(crown)°ú ÆÛºô¸®¾ð(pavilion)Àº º¯ÇÏÁö ¾Ê¾Ò´Ù.


¼ö ¼¼±âµ¿¾È, ´Ù°¢¿øÇüÀÇ ¹ÌÀû È¿°ú´Â º»ÁúÀûÀ¸·Î ȯ»óºÎ ¸é(girdle facet)¿¡ ´ëÇÑ ÁÖ ÆнÃÆ®µé(°üºÎ¿Í ÆÛºô¸®¾ð)ÀÇ °æ»ç°¢¿¡ ´Þ·È´Ù´Â °ÍÀ» ¿¬¸¶°¡°ø»ê¾÷°è´Â °æÇè¿¡ ÀÇÇؼ­ ¹è¿ü´Ù. ±×·¯³ª, ÃÖÀûÀÇ °¢µéÀº ¼ö¼ö²²³¢·Î ³²¾Ò´Ù. ±×¸®°í ¿À´Ã³¯Á¶Â÷µµ, ÀûÀýÇÑ °¢µé¿¡ ´ëÇÑ ÀϹÝÀûÀÎ µ¿ÀÇ°¡ ¾ø´Ù. º¸Åë, ÃÖÀûÀÇ ¹Ì°¡ ³ªÅ¸³ª°Ô ÇÏ´Â ¹æ¹ýÀ¸·Î µ¹À» ¿¬¸¶°¡°øÇÏ´Â °ÍÀ» Çϱ⠾î·Á¿î ¿¹¼ú·Î °£ÁÖÇÑ´Ù.


±Ý¼¼±â ÃÊÀÇ 30³âµ¿¾È¿¡, ´Ù°¢¿øÇü ¿¬¸¶°¡°ø ´ÙÀ̾î¸Õµå¿¡ ÀûÀýÇÑ ºñÀ²µéÀ» °è»êÇϱâ À§ÇÑ ½ÃµµµéÀÌ ÀÖ¾ú´Ù. ±×·¯³ª ÀÌ ¸ðµç °è»êµéÀº Á÷°üÀ¸·Î ±¸Çß´ø ¼Ò¼öÀÇ °ß½ÀÀڵ麸´Ù ±¤ÈÖ¸¦ ÀüÇô ´õ ¸¹ÀÌ ³»Áö ¸øÇß´Ù. ¼­·Î ´Ù¸¥ ±âÁØ¿¡ ÀÇÇؼ­ ±¤ÈÖ¸¦ ÆÇ´ÜÇ߱⠶§¹®¿¡ ´Ù¸¥ â½ÃÀڵ鿡 ÀÇÇؼ­ ±¸ÇÑ °á°úµéÀº ºÎºÐÀûÀ¸·Î µ¿ÀǸ¦ ¾òÁö ¸øÇß´Ù.


1919³â, Marcel Tolkowsky´Â ´ÙÀ̾î¸Õµå °í¾È(Diamond design, ÀýÆÇ)À̶ó´Â Ã¥À» ¹ß°£Çß´Ù. ±¼Àý°ú ¹Ý»ç¿¡ ´ëÇÑ Á¦ÇÑÀ¸·Î ÀÓ°è°¢À» °í·ÁÇÑ ½ÃÇàÂø¿À °è»ê¹ý¿¡ ÀÇÇؼ­, Tolkowsky´Â ÃÖ´ëÀÇ Áß·®º¸À¯º¸´Ù´Â ÃÖ´ëÀÇ ¹Ì¸¦ À§ÇÏ¿© ¾Ö¾´ ¿À·£ °æÇèÀÇ ´ÙÀ̾î¸Õµå ¿¬¸¶°¡°ø°¡µé¿¡ ÀÇÇؼ­ ¿Ïº®ÇÏ°Ô ¿¬¸¶°¡°øµÇ¾ú´Ù°í »ý°¢µÇ´Â °Í°ú ¾ÆÁÖ ±ÙÁ¢ÇÑ ºñÀ²µé¿¡ µµ´ÞÇß´Ù. ±×ÀÇ °è»êµéÀº GIA¿¡ ÀÇÇÏ¿© ¿Ïº®ÇÑ ´Ù°¢¿øÇü(brilliant)¸¦ À§ÇÑ Ç¥ÁØ ºñÀ²µé·Î¼­ ¹Þ¾Æµé¿©Á³´Ù. ±×µéÀº (°ýÈ£ ¾ÈÀÇ °ªµéÀº ºñ±³¸¦ À§ÇÑ °ÍÀÌ´Ù): ÆÛºô¸®¾ð °¢ ¥á=40.75° (40.8°); °üºÎ °¢, ¥â=34.5° (33.2); Å×À̺í Á÷°æ(table diameter), 53%(56%); ÆÛºô¸®¾ð ³ôÀÌ(pavilion height), 43.1%(43.2%); °üºÎ ³ôÀÌ(crown height), 16.2%(14.4%); Àüü ±íÀÌ, 60.3%(58.6%)ÀÌ´Ù. °ÅÀÇ ¸ðµç ¿¬¸¶°¡°ø°¡¸¶´Ù ÀÚ½ÅÀÇ Á¦Ç°µéÀÌ ÃÖ°íÀÇ ¿¹¼úÀ̶ó°í ÁÖÀåÀ» ÇÏ´Â °ü°è·Î, ÀÌ ¸ðµç °ªµéÀº ½ÇÁ¦·Î´Â Å©°Ô º¯ÇÑ´Ù. ÀÌ·¸°Ô ¸¸¿¬µÈ ÀÇ°ßÂ÷ÀÌ´Â ´Ù¸¥ °üÁ¡¿¡¼­ ¹®Á¦¸¦ »õ·Î ¿¬±¸Çϵµ·Ï ÇÏ´Â ÀÚ±ØÁ¦°¡ µÇ¾ú´Ù.



´Ù°¢¿øÇüÀÇ ¾Æ¸§´Ù¿î ¿Ü°üÀº ºûÀÇ Æ¯Á¤ÇÑ È¿°úÀÇ °á°ú, ¶Ç´Â ´õ Á¤È®ÇÏ°Ô´Â µ¹¿¡ ÀÇÇؼ­ ¹Ý»çµÇ´Â ºûÀÇ ¾ç°ú ÁúÀÇ È¥ÇÕ¿¡ ÀÇÇÑ °á°ú¶ó´Â °ÍÀº Àß ¾Ë·ÁÁ® ÀÖ´Ù. ´Ù°¢¿øÇüÀº ¿ÜºÎ·ÎºÎÅÍÀÇ ¸ðµç °¡»ó ¹æÇâ¿¡¼­ ºûÀ» ¹ÞÀ¸¸ç ÀÌ ±¤¼±µéÀº ÁÖ "â¹®"ÀÎ Å×À̺íÀ» ÅëÇÏ¿© µ¹¿¡ µé¾î°¥ ¼ö ÀÖ´Ù.  ¶ÇÇÑ, ÀÌ ¸ðµç ±¤¼±µéÀº µ¹¿¡ µé¾î°¥ ¶§, ±× ¹æÇâÀ» ¹Ù²Û´Ù (±¼ÀýÇÑ´Ù)´Â °ÍÀº Àß ¾Ë·ÁÁ® ÀÖ´Ù.



Áö±Ý±îÁö´Â, ¼ö ¸¹Àº Àç·áµéÀ» Åë°úÇÏ°í ±×¸®°í ±× ¶§¹®¿¡ ±¼ÀýÇ߱⠶§¹®¿¡ Æ¯º°ÇÑ Çö»óÀº ¾ø´Ù. ´Ù°¢¿øÇü ¿¬¸¶°¡°ø µ¹, ƯÈ÷ ´ÙÀ̾î¸ÕµåÀÇ ¿Ü°üÀ» ±×·¸°Ô ¶Ù¾î³ª°Ô ¸¸µç °ÍÀº ÀÏÂ÷ÀûÀ¸·Î´Â µ¹ÀÌ ¿¬¸¶°¡°øµÈ ÇüÅ ±×¸®°í ÀÌÂ÷ÀûÀÎ Ãø¸éÀ¸·Î´Â ´ÙÀ̾î¸ÕµåÀÇ ³ôÀº ±¼Àý·ü¿¡ ´Þ·È´Ù. µÎ °³ÀÇ ÆòÇàÇÑ ¸éµé·Î ÀÌ·ç¾îÁø ÆíÆòÇÑ ÆÇÀ¸·Î ¿¬¸¶°¡°øµÈ ´ÙÀ̾î¸Õµå´Â ³ôÀº ±¼Àý·üÀ» Áö³æ´Ù°í ÇÏ´õ¶óµµ, °áÄÚ ºê¸±¸®¾ðÆ® È¿°ú¸¦ Áö´Ò ¼ö ¾øÀ» °ÍÀÌ´Ù.


±×·¯¹Ç·Î, ÀÏÂ÷ÀûÀÎ Áú¹®Àº: µ¹ÀÇ ¾È¿¡ ¸ð¿©Áø ºû¿¡´Â ¾î¶°ÇÑ ÀÏÀÌ ÀϾ´Â°¡? ±¤¼±ÀÌ °üÂûÀÚ¸¦ ÇâÇÏ¿© ¹ÛÀ¸·Î ¹Ý»çµÇ±â À§ÇÑ ÇÊ¿äÁ¶°ÇÀº ¹«¾ùÀΰ¡? ±×·± ±¤Çа踦 Á¿ìÇÏ´Â ¾î¶°ÇÑ ÀϹÝÀûÀÎ ±ÔÄ¢ÀÌ Àִ°¡ ±×¸®°í ±×·¸´Ù¸é, ±×·± ±ÔÄ¢Àº ¿ÜºÎÀÇ Çü»óÀ¸·Î µ¹ÀÇ ±¤ÈÖµµ(brilliancy)¸¦ ³ªÅ¸³¾ ¼ö°¡ Àִ°¡?


À̸¦ ¾Ë±â À§ÇÏ¿©, ¿ì¸®´Â ¿ì¼±, µ¹ÀÇ ³»ºÎ¿¡¼­ÀÇ ±¤¼±ÀÇ °æ·Îµé ±×¸®°í ´ÙÀ½¿¡ ¿ÜºÎ¿¡ ´ëÇÑ È¿°ú¸¦ »ý°¢ÇÒ °ÍÀÌ´Ù. ÀÌÇظ¦ µ½±â À§ÇÏ¿©, ´ÙÀ½ÀÇ ³íÀÇ¿¡ »ç¿ëµÇ´Â Áß¿äÇÑ Ç¥½Ãµé¿¡ ´ëÇÏ¿© ¿ì¼± ¼³¸íÇÏ°íÀÚ ÇÑ´Ù.

 

All angles are symbolized by Greek letters (Figure 1): ¥á = pavilion angle, ¥â = crown angle, ¥ác = angle between the pavilion facets at the culet. These angles characterize the given brilliant cut; they are, of course, supposed to be constant for an individual stone. Angle Ø indicates the refractive angle at the table, whereby Ø1, (index 1) stands for the refractive angles at the left half of the diagram, while Ø2 (index 2) refers to the refractive angles at the right side. The angles of reflection at the pavilion facets are designated ¥ä with indices of respective meaning.

The angles are always measured between the ray and the normal to the facet, not to the facet itself. The normal  (lines vertical to the facet) are designated NT for the table, NP for the pavilion facets, and NB for the bezel facets.

In the first step of our investigation, we neglect the bezel facets and illustrate the profile of the stone by a simple triangle PQR, as shown in Figure 1.

Suppose a ray from outside enters the table at point A and is going to point B at the pavilion facet. Then, Ø1 is the refractive angle at the table, and ¥ä1 is the angle of incidence at the pavilion facet. The law of reflection requires that the angle of reflection is equal to the angle of incidence. Thus, the ray is reflected with angle ¥ä1 to the opposite pavilion facet at point C, being incident with angle ¥ä2. With the same angle ¥ä2, the ray is reflected back to the table entering with angle Ø2 in point D. This incident angle Ø2, actually, is the refractive angle for the ray leaving the stone to the outside.

Each of the three steps of the ray forms three triangles with the corners of the profile, triangles ABP, BCQ and CDR. The sum of the three angles within each triangle is 180 degrees. The angles of the normals to the facets are, of course, 90 degrees. Thus, considering triangle ABP, the angle inside the triangle at A is (90-Ø1), and the angle at B is (90-¥ä1). The total sum of all angles within triangle ABP is now:

¸ðµç °¢µéÀ» ±×¸®½º¾î·Î ±âȣȭÇÑ´Ù (±×¸² 1): ¥á = ÆÛºô¸®¾ð °¢, ¥â = °üºÎ °¢, ¥ác = ŧ¸´(culet)¿¡¼­ÀÇ ÆÛºô¸®¾ð ÆнÃÆ®µé »çÀÌÀÇ °¢. ÀÌ °¢µéÀº ÁÖ¾îÁø ´Ù°¢¿øÇü ¿¬¸¶°¡°øÀÇ Æ¯¼ºÀ» ³ªÅ¸³½´Ù; ¹°·Ð ±×µéÀº °³°³ÀÇ µ¹¸¶´Ù ÀÏÁ¤ÇÏ´Ù°í °¡Á¤ÇÑ´Ù. °¢ Ø´Â Å×ÀÌºí¿¡¼­ÀÇ ±¼Àý°¢, ±×·Î ÀÎÇÏ¿©, Ø1 (Ç¥½Ã 1)Àº µµÇ¥ÀÇ ¿Þ ¹ÝÂÊ¿¡¼­ÀÇ ±¼Àý°¢À» ÀǹÌÇϸç, Ø2 (Ç¥½Ã 2)´Â ¿À¸¥ÂÊ¿¡¼­ÀÇ ±¼Àý°¢À» ¸»ÇÑ´Ù. ÆÛºô¸®¾ð ÆнÃÆ®µé¿¡¼­ÀÇ °¢µéÀº ¥ä·Î ´ëÀÀÇ¥½Ã¸¦ ÇÑ´Ù.




°¢µéÀº Ç×»ó ±¤¼±°ú (ÆнÃÆ® ÀÚü°¡ ¾Æ´Ñ) ÆнÃÆ®¿¡ ´ëÇÑ ¼öÁ÷¼±»çÀÌÀÇ °¢À» ÃøÁ¤ÇÑ´Ù. ¼öÁ÷¼±(ÆнÃÆ®¿¡ ´ëÇÏ¿© ¼öÁ÷ÀÎ ¼±µé)Àº Å×ÀÌºí¿¡ ´ëÇؼ­´Â NT·Î, ÆÛºô¸®¾ð ÆнÃÆ®µé¿¡ ´ëÇؼ­´Â NP ±×¸®°í °üºÎ»ç¸é(bezel) ÆнÃÆ®µé¿¡ ´ëÇؼ­´Â NB·Î Ç¥½ÃÇÑ´Ù.

Á¶»çÀÇ Ã¹ ´Ü°è¿¡¼­´Â, °üºÎ»ç¸é ÆнÃÆ®µéÀ» ¹«½ÃÇÏ¸ç ±×¸². 1¿¡¼­¿Í °°ÀÌ µ¹ÀÇ Ãø¸éÀ» °£´ÜÇÑ »ï°¢Çü PQR·Î ³ªÅ¸³½´Ù.

±¤¼±ÀÌ ¿ÜºÎ·ÎºÎÅÍ Á¡A¿¡¼­ Å×À̺í·Î µé¾î°¡ ÆÛºô¸®¾ð ÆнÃÆ® Á¡B±îÁö °£´Ù°í °¡Á¤ÇÑ´Ù. ±×·¯¸é, Ø1´Â Å×ÀÌºí¿¡¼­ÀÇ ±¼Àý°¢ÀÌ°í ¥ä1Àº ÆÛºô¸®¾ð ÆнÃÆ®¿¡¼­ÀÇ ÀԻ簢ÀÌ´Ù. ±¼ÀýÀÇ ¹ýÄ¢¿¡ ÀÇÇÏ¿© ±¼Àý°¢Àº ÀԻ簢°ú °°´Ù. ±×·¯¹Ç·Î, ±¤¼±Àº °¢ ¥ä1·Î ¹Ý´ëÂÊ ÆÛºô¸®¾ð ÆнÃÆ®ÀÇ Á¡C¿¡ ¹Ý»çµÇ¾î ÀԻ簢 ¥ä2¸¦ ÀÌ·é´Ù. ±¤¼±Àº °°Àº °¢ ¥ä2·Î Å×À̺í·Î µÇµ¹¾Æ°¡ Á¡D¿¡¼­ °¢ Ø2·Î µé¾î°£´Ù. ÀÌ ÀԻ簢 Ø2´Â ½ÇÁ¦·Î´Â µ¹ÀÇ ¿ÜºÎ·ÎºÎÅÍ ¶°³­ ±¤¼±ÀÇ ±¼Àý°¢ÀÌ´Ù.





±¤¼±ÀÇ 3 ´Ü°èµéÀÇ °¢°¢Àº µ¹ÀÇ Ãø¸é ¸ð¼­¸®¸¦ Áö´Ñ 3 °³ÀÇ »ï°¢Çüµé, ABP, BCQ¿Í CDR¸¦ Çü¼ºÇÑ´Ù. °¢ »ï°¢Çü³»ÀÇ 3 °³ÀÇ °¢µéÀÇ ÇÕÀº 180µµÀÌ´Ù. ÆнÃÆ®µé¿¡ ´ëÇÑ ¼öÁ÷°¢µéÀº ¹°·Ð 90ÀÌ´Ù. ±×·¯¹Ç·Î, »ï°¢Çü ABPÀ» °í·ÁÇÏ¿©, A¿¡¼­ÀÇ »ï°¢ÇüÀÇ ³»ºÎÀÇ °¢Àº (90-Ø1)À̸ç, B¿¡¼­ÀÇ °¢Àº (90-¥ä1)ÀÌ´Ù. »ï°¢Çü ABP³»ÀÇ ¸ðµç °¢ÀÇ ÇÕÀº ÀÌÁ¦:

¥á + (90 - Ø1) + (90 - ¥ä1)
=180°
or ¥á = Ø2 + ¥ä1
or ¥ä2 = ¥á ± Ø1



(1a)
(1b)

The same situation exists for the other two triangles. In triangle CDR, we have

°°Àº »óȲÀº ´Ù¸¥ 2°³ÀÇ »ï°¢Çüµé¿¡µµ Á¸ÀçÇÑ´Ù. »ï°¢Çü CDR¿¡¼­, ¿ì¸®´Â

¥á + (90 - Ø2) + (90 - ¥ä2)
=180°
or ¥á = Ø2 + ¥ä2
or ¥ä2 = ¥á ± Ø2



(2a)
(2b)

Triangle BCQ provides

»ï°¢Çü BCQ´Â

¥ác + (90 - ¥ä1) + (90 - ¥ä2)
=180°
or ¥á = Ø2 + ¥ä2



(3a)

The correlation between and in triangle PQR is

»ï°¢Çü PQR»çÀÌ¿Í ³»¿¡¼­ÀÇ »ó°ü °ü°è´Â

¥ác + 2¥á = 180°
or ¥ác = 180 - 2¥á


(3b)

Substituting (3b) into (3a)

(3b)¸¦ (3a)¿¡ ġȯÇÏ°í

¥ä1 + ¥ä2 = 180 - 2¥á

(3c)

combing (1b) and (2b)

(1b)¿Í (2b)¸¦ ÇÕÇÏ°í

¥ä1 + ¥ä2 = 2¥á - Ø1 - Ø2

 

substituting (3c) for ( ) (¥ä1 + ¥ä2)

(3c)¸¦ ( ) (¥ä1 + ¥ä2)¿¡ ġȯÇϸç

180 - 2¥á = 2¥á - Ø1 - Ø2

 

and rearranging, we finally obtain

±×¸®°í Àç¹è¿­Çϸé, ÃÖÁ¾ÀûÀ¸·Î

Ø1 + Ø2 = 4¥á - 180°

(4a)

This means the sum of the angles at the table (incident refractive angle plus exit refractive angle) of any ray inside the stone that is reflected by the pavilion facets is constant and depends only on the size of the pavilion angle ¥á. The two angles (Ø1 + Ø2) combine behind the culet to one angle, Ø0, which is a characteristic angle of the cut, and which is the same for all rays reflected inside the stone, as demonstrated in Figure 3. Equation (4a) can now be written: 

ÀÌ°ÍÀº ÆÛºô¸®¾ð ÆнÃÆ®µé¿¡ ÀÇÇؼ­ ¹Ý»çµÇ´Â µ¹ ³»ÀÇ ¾î¶°ÇÑ ±¤¼±ÀÇ Å×ÀÌºí¿¡¼­ÀÇ °¢µéÀÇ ÇÕ(ÀÔ»ç ±¼Àý°¢ + Ãâ»ç ±¼Àý°¢)Àº ÀÏÁ¤Çϸç ÆÛºô¸®¾ð °¢ ¥áÀÇ Å©±â¸¸¿¡ ´Þ·ÁÀÖ´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù. µÎ °¢µé(Ø1 + Ø2)Àº ŧ¸´¾Æ·¡¿¡¼­ ÇÕÃÄÁ® ¿¬¸¶°¡°ø Ư¼º °¢ÀΠØ0°¡ µÇ¸ç ±×¸² 3¿¡ º¸ÀÎ ¹Ù¿Í °°ÀÌ µ¹ ³»¿¡¼­ ¹Ý»çµÇ´Â ¸ðµç ±¤¼±µé¿¡°Ô °°´Ù. ½Ä(4a)´Â ÀÌÁ¦ ´ÙÀ½°ú °°ÀÌ ¾²¿©Áú ¼ö ÀÖ´Ù:

Ø0 = Ø1 + Ø2 = 4¥á - 180°

(4b)

We conclude from equation (4b) that Ø0 is zero if ¥á = 45°. In this case, Ø1 and Ø2 are always equal but they have opposite sign. This means if the pavilion angle is 45°, all rays leaving the stone are parallel to the originating incident rays. For ¥á smaller than 45°, Ø0 is becomes negative; and for ¥á larger than 45°, Ø0 is positive. This inversion of sign is possible for the components of Ø0 also; i.e., Ø1 and Ø2. Recalling equations (1b) and (2b), we find that the angle of reflection at the pavilion ¥ä1 = ¥á and ¥ä2 = ¥á, if Ø1 or Ø2 is zero, respectively. If ¥ä1 or ¥ä2 is smaller than ¥á, then, Ø1 or Ø2 is positive; if one of the two angles, ¥ä1 or ¥ä2, is larger than ¥á, Ø1 or Ø2 is negative. For Ø1 or Ø2 equal to zero, the rays coincide with the normal.

½Ä(4b)·ÎºÎÅÍ, ¸¸¾à¿¡ ¥á = 45°À̸é Ø0´Â ¿µ(zero)À̶ó´Â °á·ÐÀ» ³¾ ¼ö ÀÖ´Ù. ÀÌ °æ¿ì¿¡, Ø1°ú Ø2´Â Ç×»ó °°Áö¸¸, ¹Ý´ëºÎÈ£¸¦ Áö´Ñ´Ù. ÀÌ°ÍÀº ¸¸¾à¿¡ ÆÛºô¸®¾ð °¢ÀÌ 45°À̸é, µ¹À» ¶°³ª´Â ¸ðµç ±¤¼±µéÀº óÀ½ÀÇ ÀÔ»ç ±¤¼±µé°ú ÆòÇàÇÏ´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù. 45°º¸´Ù ÀÛÀ¸¸é, Ø0´Â À½¼ö°¡ µÇ¸ç; 45°º¸´Ù Å©¸é, Ø0´Â ¾ç¼öÀÌ´Ù. ÀÌ ºÎÈ£ÀÇ ¿ªÀº Ø0ÀÇ ¼ººÐµé Áï, Ø1°ú Ø2¿¡µµ °¡´ÉÇÏ´Ù; ½Ä(1b)°ú (2b)¸¦ µÇµ¹¾Æ »ý°¢Çϸé, ¸¸¾à¿¡ Ø1 ¶Ç´Â Ø2°¡ ¿µ(zero)À̸é, ÆÛºô¸®¾ð¿¡¼­ÀÇ ¹Ý»ç°¢Àº °¢°¢ ¥ä1 = ¥á¿Í ¥ä2 = ¥áÀÓÀ» ¾Ë ¼ö ÀÖ´Ù. ¸¸¾à¿¡ ¥ä1 ¶Ç´Â ¥ä2°¡ ¥áº¸´Ù ÀÛÀ¸¸é, Ø1 ¶Ç´Â Ø2´Â ¾ç¼öÀÌ´Ù; ¸¸¾à¿¡ µÎ °³ÀÇ °¢µé, ¥ä1 ¶Ç´Â ¥ä2,ÀÇ Çϳª°¡ ¥áº¸´Ù Å©¸é, Ø1 ¶Ç´Â Ø2´Â À½¼öÀÌ´Ù. Ø1 ¶Ç´Â Ø2°¡ ¿µ(zero)ÀÏ ¶§, ±¤¼±µéÀº ¹ý¼±°ú ÀÏÄ¡ÇÑ´Ù.

The three typical cases are illustrated in Figure 2, where only the left corner of Figure 1 is plotted. Positive Ø1 is outside the corresponding triangle AB3P; negative Ø1 is inside the triangle AB3P.

±×¸² 1ÀÇ ¿ÞÂÊ ¸ð¼­¸®¸¸À» ³ªÅ¸³½ ±×¸² 2¿¡ 3 °³ÀÇ ÀüÇüÀûÀÎ °æ¿ìµéÀ» ¿¹½ÃÇÏ¿´´Ù. ¾çÀÇ(+) Ø1´Â ´ëÀÀ »ï°¢Çü AB3PÀÇ ¿ÜºÎÀÌ°í; À½ÀÇ(-) Ø1´Â »ï°¢Çü AB3PÀÇ ³»ºÎÀÌ´Ù.

Incorporating now the crown angle ¥â, Figure 4, it is evident that this angle has no influence on the angle Ø0 at all. We can readily read from Figure 4 that the refractive angle Ø12 at the bezel facet has a very simple correlation to the corresponding angle Ø2 at the table.
It is, Ø12 - ¥â = Ø2
and if we add the angle Ø1 for the incident ray to both sides of the equation, we obtain

ÀÌÁ¦, ±×¸² 4ÀÇ °üºÎ °¢ ¥â¸¦ È¥ÇÕÇϴµ¥, ÀÌ °¢Àº °¢ Ø0¿¡ ¾Æ¹«·± ¿µÇâµµ ÁÖÁö ¾Ê´Â´Ù´Â Áõ°ÅÀÌ´Ù.  ¿ì¸®´Â ±×¸² 4¿¡¼­ °üºÎ»ç¸é¿¡¼­ÀÇ ±¼Àý°¢ Ø12´Â Å×ÀÌºí¿¡¼­ÀÇ ´ëÀÀ°¢ Ø2¿Í ¾ÆÁÖ °£´ÜÇÑ °ü°è¸¦ Áö´Ï°í ÀÖ´Ù´Â °ÍÀ» Áï½Ã ¾Ë ¼ö ÀÖ´Ù.
Áï, Ø12 - ¥â = Ø2
±×¸®°í ¸¸¾à¿¡ ½ÄÀÇ ¾çÂÊ¿¡ ÀԻ籤¼±ÀÇ °¢ Ø1À» ´õÇϸé, ´ÙÀ½À» ¾ò´Â´Ù

Ø1 + Ø12 - ¥â = Ø1 + Ø2 = Ø0

(5a)

Referring to equation (4b), we accordingly combine the two angles, Ø1 and Ø1 of the ray to one angle Ø10 and equation (5a) becomes

½Ä(4b)¸¦ ÂüÁ¶ÇÏ°í, µû¶ó¼­ Ø1°ú ÇϳªÀÇ °¢ Ø10¿¡ ´ëÇÑ ±¤¼± Ø1 µÎ °¢µéÀ» ÇÕÄ¡¸é ½Ä (5a)´Â ´ÙÀ½°ú °°ÀÌ µÈ´Ù

Ø10 - ¥â = Ø1 + Ø12 - ¥â = Ø0

(5b)

The two components (Ø1 + Ø2) and (Ø1 + Ø12), of each the total angles, Ø0 + Ø10 are of fundamental importance. One of them characterizes the refractive angle of the incident ray; the other one characterizes that of the departing ray. In the following, we will consider the angle with index 1 as that of the incident ray, the other one with index 2 is for the departing ray. The latter is of primary interest because the departing (reflected) ray makes the appearance of the brilliant. We question now, which rays collected inside the stone (angle Ø1) can be reflected to the outside (angles Ø2) for a given brilliant cut, or, what is the angular margin (maximum and minimum) for rays departing from the table and from the bezel facets.

This means with reference to the formulae derived above, we have to find a correlation between the two refractive angles, Ø1 and Ø2, and the angles ¥á and ¥â, which characterize the geometric-optical quality of the cut. Then, the correlation has to be resolved for the exit refractive angle Ø2. In other words, the problem is: which of all possible rays that enter the stone with refractive angle Ø1 return to the table or bezel facet under such an angle Ø2 that they can escape to the outside without being totally reflected to the outside of the stone?

We recall equation (4b), which states 

°¢°¢ÀÇ Àüü °¢µé, Ø0 + Ø10ÀÇ µÎ ¼ººÐµé (Ø1 + Ø2)°ú (Ø1 + Ø12)Àº ±Ùº»ÀûÀ¸·Î Áß¿äÇÏ´Ù. À̵é ÁßÀÇ Çϳª´Â ÀԻ籤¼±ÀÇ ±¼Àý°¢ÀÇ Æ¯¼ºÀ» ³ªÅ¸³­´Ù; ´ÙÀ½¿¡¼­, ÀԻ籤¼±ÀÇ ±¼Àý°¢À¸·Î Ç¥½Ã 1ÀÎ °¢, Ç¥½Ã 2ÀÎ ´Ù¸¥ °ÍÀº Ãâ»ç±¤¼±ÀÎ °ÍÀ¸·Î »ý°¢ÇÒ °ÍÀÌ´Ù. Ãâ»ç(±¼ÀýµÈ) ±¤¼±ÀÌ ´Ù°¢¿øÇüÀÇ ¿Ü°üÀ» ¸¸µé±â ¶§¹®¿¡ ÈÄÀÚ°¡ ÀÏÂ÷ÀûÀÎ °ü½É°Å¸®ÀÌ´Ù. ÀÌÁ¦ ¿ì¸®ÀÇ Àǹ®Àº ÁÖ¾îÁø ´Ù°¢¿øÇü ¿¬¸¶°¡°ø¿¡¼­, µ¹ ³»ºÎ(°¢ Ø1)¿¡ ¸ðÀÎ ±¤¼±µéÀÌ ¿ÜºÎ(°¢ Ø2)·Î ¹Ý»çµÉ ¼ö ÀÖÀ» °ÍÀΰ¡ ¶Ç´Â Å×À̺í°ú °üºÎ»ç¸éµéÀ» ¶°³ª´Â ±¤¼±µéÀÇ °¢µµÀûÀÎ ¿©À¯(ÃÖ´ë¿Í ÃÖ¼Ò)´Â ¾ó¸¶Àΰ¡ÀÌ´Ù.





ÀÌ°ÍÀº À§¿¡¼­ À¯µµÇÑ °ø½Äµé¿¡ ´ëÇÑ °ÍÀ» ÀǹÌÇϸç, ¿ì¸®´Â ¿¬¸¶°¡°øÀÇ ±âÇÏÇÐÀûÀÎ ±¤ÇÐÀû ÁúÀ» Ư¼ºÈ­ÇÏ´Â µÎ °³ÀÇ ±¼Àý°¢µé Ø1°ú Ø2, ±×¸®°í °¢ ¥á¿Í ¥â»çÀÌÀÇ »óÈ£°ü°è¸¦ ã¾Æ¾ß ÇÑ´Ù. ±×¸®°í ³ª¼­, Ãⱸ ±¼Àý°¢ Ø2¿¡ ´ëÇÑ »óÈ£°ü°è¸¦ ÇØ°áÇØ¾ß ÇÑ´Ù. ´Ù½Ã ¸»Çϸé, ¹®Á¦´Â: ±¼Àý°¢ Ø1·Î µ¹¿¡ µé¾î°¥ °¡´É¼ºÀÌ ÀÖ´Â ¸ðµç ±¤¼±µé Áß¿¡¼­, µ¹ÀÇ ¿ÜºÎ·Î ¿ÏÀüÈ÷ ¹Ý»çµÇÁö ¾Ê°í ¿ÜºÎ·Î Å»ÃâÇÒ ¼ö ÀÖ´Â °¢ Ø2¿Í °°Àº °¢ ¾Æ·¡¿¡¼­ Å×À̺íÀ̳ª °üºÎ»ç¸éÀ¸·Î µÇµ¹¾Æ°¡´Â °ÍÀº ¾î´À ±¤¼±Àΰ¡?

½Ä (4b)À» »ó±âÇÏ¿© ±â¼úÇϸé,

Ø1 + Ø2 = 4¥á - 180° = Ø0

 

and from equation (5a) we have

±×¸®°í ½Ä (5a)·ÎºÎÅÍ ´ÙÀ½À» ¾ò´Â´Ù.

Ø1 + Ø12 = Ø0 + ¥â
= 4¥á + ¥â - 180° 

The first of the two equations refers by definition to table reflections. For an angle of ¥â = 0°, the second equation is identical with the first one. Thus, the first equation can be considered a special case of the other equation; and ¥â has the general meaning of the inclination angle, with reference to the girdle plane, of any facet (also star and upper girdle facets), which is met by a ray from inside the stone. For a ray striking the table from inside, ¥â is zero.

From this point of view, the left sides of the two equations above can be considered equal, and the two equations can be combined to one generally valid equation: 

µÎ ½Äµé ÁßÀÇ Ã¹Â°´Â Å×ÀÌºí ¹Ý»çµé¿¡ ´ëÇÑ Á¤ÀǷμ­ ¸»ÇÑ´Ù. ¥â = 0°ÀÎ °¢¿¡ ´ëÇÏ¿©, µÑ° ½ÄÀº ù°¿Í °°´Ù. ±×·¯¹Ç·Î, ù° ½ÄÀº ´Ù¸¥ ½ÄÀÇ Æ¯º°ÇÑ °æ¿ì·Î °í·ÁµÉ ¼ö ÀÖ´Ù; ±×¸®°í ¥â´Â ¾î¶² ÆнÃÆ®(½ºÅ¸¿Í ȯ»óºÎ »óºÎÀÇ ÆнÃÆ®µéµµ ¿ª½Ã)ÀÇ È¯»óºÎ ¸é¿¡ ´ëÇÑ ÀϹÝÀûÀÎ °æ»ç°¢À» ÀǹÌÇϸç, µ¹ÀÇ ³»ºÎ·ÎºÎÅÍÀÇ ±¤¼±°ú ¸¶ÁÖÄ£´Ù. ³»ºÎ·ÎºÎÅÍ Å×ÀÌºí¿¡ ºÎµúÄ¡´Â ±¤¼±¿¡ ´ëÇؼ­, ¥â´Â ¿µ(zero)ÀÌ´Ù.



ÀÌ °üÁ¡À¸·ÎºÎÅÍ, À§ÀÇ µÎ °³ÀÇ ½ÄµéÀÇ ¿ÞÂʵéÀº °°´Ù°í °£ÁÖÇÒ ¼ö ÀÖÀ¸¸ç µÎ ½ÄµéÀº ÇϳªÀÇ ÀϹÝÀûÀ¸·Î À¯È¿ÇÑ ½ÄÀ¸·Î ÇÕÃÄÁú ¼ö ÀÖ´Ù.

Ø1 + Ø2 = 4¥á + ¥â - 180°

Resolving for Ø2

Ø2¿¡ ´ëÇÏ¿© Ç®¸é,

Ø2 = 4¥á + ¥â - 180° - Ø1

(6)

This is the final equation that describes completely and sufficiently the reflecting properties of a brilliant-cut diamond on the ground of the design angles ¥á and ¥â. For this reason, equation (6) may be designated the brilliant equation.

To discern the angular margin of all rays Ø2, which can leave a stone of design (¥á, ¥â) after internal reflection, it is important to know which rays can enter the stone, or what is the possible maximum and minimum for the entering ray Ø1. As a matter of fact, Ø1 cannot be larger than the critical angle Øcr = 24.5° for diamond. Thus, Ø1 can, at first sight, vary within the interval +24.5 ¡Â Ø2 ¡Ã -24.5 (the symbol ¡Â means smaller or equal to; ¡Ã means larger or equal to). The same, obviously, applies to ray Ø2. If ray Ø2 is supposed to leave the stone, it has to strike the facet from inside the stone within the same interval +24.5 ¡Â Ø2 ¡Ã -24.5. The transition of light at the crown from inside the stone to the outside is possible only if Ø2 is smaller than the critical angle.

On the other hand, all light striking the pavilion facets has to be totally reflected by the pavilion facets. This means, angle ¥ä in equation (1a) has to be larger than the critical angle, so that the minimum limit for ¥ä1 is: ¥ä1 = Øcr = 24.5°. This limit substituted in equation (1a) gives:

ÀÌ°ÍÀÌ ´Ù°¢¿øÇü ¿¬¸¶°¡°ø ´ÙÀ̾î¸ÕµåÀÇ ¹Ý»ç ¼ºÁúÀ» °í¾È °¢µé ¥á¿Í ¥â¸¦ ±âÃÊ·Î ÇÏ¿© ¿ÏÀüÇÏ°Ô ±×¸®°í ÃæºÐÇÏ°Ô ±â¼úÇÑ ½ÄÀÌ´Ù. ÀÌ·± ÀÌÀ¯·Î, ½Ä(6)Àº ºê¸±¸®¾ðÆ® ½ÄÀ̶ó°í ºÎ¸¦ ¼öµµ ÀÖÀ» °ÍÀÌ´Ù.


³»ºÎ ¹Ý»ç ÈÄ¿¡ (¥á, ¥â)·Î °í¾ÈµÈ µ¹À» ¶°³¯ ¼ö ÀÖ´Â ¸ðµç ±¤¼±µé Ø2ÀÇ °¢µµÀûÀÎ ¿©À¯¸¦ ¾Ë±â À§ÇÏ¿©, µ¹¿¡ µé¾î°¥ ¼ö ÀÖ´Â ±¤¼±µé°ú µé¾î°¡´Â ±¤¼± Ø1ÀÇ ÃÖ´ë¿Í ÃÖ¼ÒÀÇ °ªÀ» ¾Ë¾Æ³»´Â °ÍÀÌ Áß¿äÇÏ´Ù. »ç½Ç, ´ÙÀ̾î¸Õµå¿¡ ´ëÇÏ¿©, Ø1Àº ÀÓ°è°¢ Øcr = 24.5°º¸´Ù Ŭ ¼ö ¾ø´Ù. ±×·¯¹Ç·Î, Ø1Àº °£°Ý +24.5 ¡Â Ø2 ¡Ã -24.5¾È¿¡ º¯ÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ» ÇÑ´«¿¡ ¾Ë ¼ö ÀÖ´Ù (¡Â Ç¥½Ã´Â ´õ À۰ųª ¶Ç´Â °°´Ù; ¡Ã ´Â ´õ Å©°Å³ª °°´Ù´Â ¶æÀÌ´Ù). ±¤¼± Ø2¿¡µµ ºÐ¸íÇÏ°Ô °°Àº °ÍÀÌ Àû¿ëµÈ´Ù. ¸¸¾à¿¡ ±¤¼± Ø2°¡ µ¹À» ¶°³­´Ù°í ÇÑ´Ù¸é, °°Àº °£°Ý +24.5 ¡Â Ø2 ¡Ã -24.5 ¾È¿¡¼­ µ¹ÀÇ ³»ºÎ·ÎºÎÅÍ ÆнÃÆ®¿¡ ºÎµúÃÄ¾ß ÇÑ´Ù. ¸¸¾à¿¡ Ø2 °¡ ÀÓ°è°¢º¸´Ù ÀÛÀ¸¸é, µ¹ÀÇ ³»ºÎ·ÎºÎÅÍ ¿ÜºÎ·Î °üºÎ¿¡¼­ÀÇ ºûÀÇ º¯È­°¡ °¡´ÉÇÏ´Ù.




´Ù½Ã ¸»Çϸé, ÆÛºô¸®¾ð ÆнÃÆ®µé¿¡ ºÎµúÄ¡´Â ¸ðµç ºûµéÀº ÆÛºô¸®¾ð ÆнÃÆ®µé¿¡ ÀÇÇؼ­ ¸ðµÎ ¹Ý»çµÇ¾î¾ß ÇÑ´Ù. ÀÌ°ÍÀº ½Ä(1a)³»¿¡¼­ÀÇ °¢ ¥ä ´Â ÀÓ°è°¢º¸´Ù Ä¿¾ß¸¸, ¥ä1¿¡ ´ëÇÑ ÃÖ¼Ò°ªÀº ¥ä1 = Øcr = 24.5°¶ó´Â ÀǹÌÀÌ´Ù. ÀÌ ÃÖ¼Ò°ªÀ» ½Ä(1a)¿¡ ġȯÇϸé

¥ä = Ø1 + Øcr

and for Ø1:

±×¸®°í Ø1¿¡ ´ëÇÏ¿©:

Ø1 = ¥á - Øcr

Since (¥á - Øcr) is always positive, angle Ø can actually vary only within an interval (¥á - Øcr) ¡Â Ø ¡Ã - Øcr in order to warrant total reflection at the pavilion and finally, departure through the crown to the outside.

For a brilliant cut with, say ¥á = 35° and ¥â = 34°, the maximum for Ø will be: Ø1 = ¥á - Øcr = 35 - 24.5 = +10.5°. This substituted into the brilliant equation (6) gives for table reflection (¥â = 0°) : Ø2 = - 50.5°, which exceeds the critical angle for Ø2. The ray will certainly be reflected by the pavilion (no leakage on this part), but it will not go through the table facet to the outside: it is totally reflected back into the stone. Since the lower limit for Ø2 = -24.5, it follows from equation (6) that only rays that enter with maximum Ø1 = -15.5 (-24.5 = 4 x 35 + 0 -180 - Ø1) can be reflected by the table. The other limit, minimum Ø1 = -24.5 provides Ø2 = -15.5 and -24.5°, which after internal reflection, strike the table from inside with angles Ø2 between -24.5 and -15.5, respectively. All other rays are totally reflected inside the stone or leak through the pavilion.

In s similar way, it follows for table-to-bezel reflection: Ø2 = 4¥á + ¥â - 180 - Ø1 = 4¥á + ¥â - 180 - (¥á - Øcr) = -16.5° for Ø2 (negative sign). The minimum for Ø1 is Ø1 = - 24.5°. In this case, Ø2 results to : Ø2 = +18.5. So, we have for this particular brilliant cut the following limitations:

(¥á - Øcr)Àº Ç×»ó ¾ç¼öÀ̱⠶§¹®¿¡, ¸ðµç ±¤¼±ÀÌ ÆÛºô¸®¾ð¿¡¼­ ¹Ý»çµÇ¾î ÃÖÁ¾ÀûÀ¸·Î °üºÎ¸¦ ÅëÇÏ¿© ¿ÜºÎ·Î ³ª°¡±â À§Çؼ­´Â, °¢ Ø´Â ½ÇÁ¦·Î´Â °£°Ý (¥á - Øcr) ¡Â Ø ¡Ã - Øcr ÀÇ ¾È¿¡¼­¸¸ º¯ÇÒ ¼ö ÀÖ´Ù.

¥á = 35°¿Í ¥â = 34°ÀÎ ´Ù°¢¿øÇü ¿¬¸¶°¡°øÀ» ¿¹·Î µé¸é, Ø¿¡ ´ëÇÑ ÃÖ´ë°¢Àº Ø1 = ¥á - Øcr = 35 - 24.5 = +10.5°ÀÌ´Ù. ÀÌ°ÍÀ» ºê¸±¸®¾ðÆ® ½Ä(6)¿¡ ġȯÇϸé, Å×ÀÌºí ¹Ý»ç¿¡ ´ëÇÏ¿© (¥â = 0°) : Ø2 = - 50.5°À̸ç Ø2¿¡ ´ëÇÑ ÀÓ°è°¢À» ³Ñ´Â´Ù. ÀÌ ±¤¼±Àº ÆÛºô¸®¾ð¿¡ ÀÇÇؼ­ È®½ÇÇÏ°Ô ¹Ý»çµÉ °ÍÀÌÁö¸¸(ÀÌ ºÎºÐ¿¡¼­´Â ´©ÃâÀÌ ¾ø´Ù), Å×À̺í ÆнÃÆ®¸¦ ÅëÇÏ¿© ¿ÜºÎ·Î ³ª°¡Áö ¾ÊÀ» °ÍÀÌ´Ù: µ¹ ¾ÈÀ¸·Î ¿ÏÀüÈ÷ ¹Ý»çµÇ¾î ¹ö¸°´Ù. ÇÏÇÑÄ¡´Â Ø2 = -24.5À̹ǷÎ, ½Ä (6)¿¡ µû¶ó, ÃÖ´ë Ø1 = -15.5 (-24.5 = 4 x 35 + 0 -180 - Ø1)·Î µé¾î°¡´Â ±¤¼±µé¸¸ÀÌ Å×ÀÌºí¿¡ ÀÇÇؼ­ ¹Ý»çµÉ ¼ö ÀÖ´Ù. ´Ù¸¥ Á¦ÇÑÄ¡ÀÎ ÃÖ¼Ò Ø1 = -24.5´Â Ø2 = -15.5¿Í -24.5°¸¦ ³»¸ç, ³»ºÎ¹Ý»ç ÈÄ¿¡ °¢°¢ -24.5¿Í -15.5»çÀÌÀÇ °¢ Ø2µéÀ» Áö´Ï°í ³»ºÎ·ÎºÎÅÍ Å×ÀÌºí¿¡ ºÎµúÄ£´Ù. ´Ù¸¥ ¸ðµç ±¤¼±µéÀº µ¹ÀÇ ³»ºÎ·Î ¿ÏÀüÈ÷ ¹Ý»çµÇ°Å³ª ¶Ç´Â ÆÛºô¸®¾ðÀ» ÅëÇÏ¿© ´©ÃâµÈ´Ù.



Å×ÀÌºí ´ë °üºÎ»ç¸é ¹Ý»ç¿¡µµ °°Àº ¹æ¹ýÀÌ Àû¿ëµÈ´Ù: Ø2¿¡ ´ëÇÏ¿©(À½ÀÇ ºÎÈ£) Ø2 = 4¥á + ¥â - 180 - Ø1 = 4¥á + ¥â - 180 - (¥á - Øcr) = -16.5°ÀÌ´Ù. Ø1¿¡ ´ëÇÑ ÃÖ¼Ò´Â Ø1 = - 24.5°ÀÌ´Ù. ÀÌ °æ¿ì¿¡, Ø2ÀÇ °á°ú´Â : Ø2 = +18.5ÀÌ´Ù. ±×·¡¼­, ´ÙÀ½°ú °°Àº Á¦ÇÑÀ» Áö´Ñ ƯÀ¯ÀÇ ´Ù°¢¿øÇü ¿¬¸¶°¡°øÀ» ¾ò°Ô µÈ´Ù.

Type of reflection

Incident ray (Ø1)

Departing ray (Ø2)

max.

min.

max.

min.

Table to Table

-15.5

-24.5

-15.5(40)

-24.5(90)

Table to Bezel Facet

+10.5

-24.5

+18.5(50)

-16.5(43)

¹Ý»çÇüÅÂ

ÀÔ»ç ±¤¼± (Ø1)

Ãâ»ç ±¤¼± (Ø2)

max.

min.

max.

min.

Å×ÀÌºí ´ë Å×À̺í

-15.5

-24.5

-15.5(40)

-24.5(90)

Å×ÀÌºí ´ë °üºÎ»ç¸é ÆнÃÆ®

+10.5

-24.5

+18.5(50)

-16.5(43)

With these figures the limitations for the ray departing the stone can be calculated by means of the sine law of refraction (sin ¥ä2 = n.sin Ø2) where ¥ä2 is the resultant angle for the direction of a ray outside the stone, which is originated by a ray striking the facet from inside with an angle Ø2. The letter "n" stands for the refractive index of diamond, which is n = 2.41. The angles ¥â2 are given in parenthesis for angles Ø2 in the table above.

ÀÌ °ªµé·Î µ¹À» ¶°³ª´Â ±¤¼±¿¡ ´ëÇÑ Á¦ÇÑÀ» ±¼ÀýÀÇ sine¹ýÄ¢(sin ¥ä2 = n.sin Ø2)À¸·Î °è»êÇÒ ¼ö ÀÖ´Ù. ¥ä2´Â µ¹ÀÇ ¿ÜºÎ¹æÇâ¿¡ ´ëÇÑ ÇÕ¼º °¢À¸·Î, °¢ Ø2·Î ³»ºÎ·ÎºÎÅÍ ÆнÃÆ®¿¡ ºÎµúÄ¡´Â ±¤¼±¿¡ ÀÇÇؼ­ »ý±ä´Ù. ¹®ÀÚ "n" ´ÙÀ̾î¸ÕµåÀÇ ±¼Àý·üÀ» Ç¥½ÃÇϸç n = 2.41 ÀÌ´Ù. °¢ ¥â2µéÀº À§ÀÇ µµÇ¥¿¡¼­ °¢ Ø2µéÀÇ °ýÈ£ ³»¿¡ ÁÖ¾îÁ® ÀÖ´Ù.

This calculation has been done for three different brilliant designs with ¥á = 35°, 41° and 48°. The crown angle has been assumed the same in all three cases: ¥â = 34°. The effect of possible reflection from each stone has been plotted in Figure 5.

The result, certainly, is very interesting. Figure 5a illustrates a typical fisheye effect with the center of the stone appearing dark. The stone is too flat and the pavilion angle ¥á is too small. The other extreme (¥á = 48°), (Figure 5c), with the pavilion angle too large, shows a concentration of the reflected rays, particularly from the bezels toward the center. The bezel reflection in this case is very poor; the stone has no fire. It is easy to conceive that the effects of all other cuts must be between the two extremes. Obviously, the most effective cut is represented by Figure 5b, where all radiation comes out of the stone in a sparkling way directed substantially toward the observer.

The transition from the brilliant cut in Figure 5c to that of Figure 5a appears like the unfolding of a rose blossom. In Figure 5c the "rose" is still closed; we have the "rose bud". Such a "bud" certainly has some attractive features, but we have the impression it is not complete yet; we expect the full beauty of the unfolded "blossom". This is what we have in Figure 5b, the beautifully "blossomed rose". Then, the "rose" is fading away (Figure 5a), many "leaves" are lost, and the attractive beauty is gone. With this comparison in mind, the importance of the main angles of a brilliant-cut diamond should be evident.

The basic design of a brilliant and its resultant effect, which has been discussed here, is, of course, modified by the addition of star facets and upper- and lower-girdle facets. All these additional facets also obey the brilliant law, equation (6). The star facets represent bezels with a smaller ¥â-angle, thus providing more white-light reflection. The upper-girdle facets with a larger ¥â add more fire to the stone and the lower-girdle facets represent additional pavilion facets with a modified pavilion angle, thus enhancing the variability of possible reflections. The effect of each variation, and thus the total effect of a brilliant-cut diamond comprising all types of facets, can be calculated with the brilliant equation and plotted in a similar way, as Figure 5.

It can be shown that the application of the brilliant law is not restricted to diamond alone; it can be applied to all other transparent gemstones even to glass and plastics. This law is of general validity, and what we call the degree of brilliancy of a gemstone can also be derived from the brilliant law.

In any case, it should be kept in mind that the brilliant cut of a diamond, actually, is a special optical device like a prism, a lens, a reflector, or a combination of them. The effect of all such devices is the consequence of strict natural laws. There is no mystery behind it. The art of cutting brilliant is not based upon a magic formula that is kept a secret by the cutter. It depends on the individual skill of the cutter to know the natural laws that govern the optical system he is creating, the brilliant, and to approach them to an optimum.

To clarify the physical principles that determine the effect of any cut stone is the foremost intention of this article. What the lens formula is for the lens is the brilliant equation for a brilliant-cut diamond.

ÀÌ °è»êÀº ¥á = 35°, 41° and 48°ÀÇ 3 °³ÀÇ ´Ù°¢¿øÇü °í¾Èµé¿¡ ´ëÇÏ¿© ÀÌ·ç¾îÁ³´Ù. °üºÎ °¢Àº 3 °³ÀÇ ¸ðµç °æ¿ìµé¿¡ ´ëÇؼ­ °°´Ù°í ÃßÁ¤ÇÏ¿´´Ù: ¥â = 34°. °¢ µ¹ÀÇ ¹Ý»ç °¡´É¼ºÀÇ È¿°ú¸¦ ±×¸² 5¿¡ ±×·È´Ù.


°á°ú´Â È®½ÇÈ÷ ¾ÆÁÖ Èï¹Ì·Ó´Ù. ±×¸² 5a´Â µ¹ÀÇ Áß½ÉÀÌ ¾îµÎ¿î ÀüÇüÀûÀÎ ¾î¾È(åÛäÑ)È¿°ú¸¦ ³ªÅ¸³½´Ù. µ¹ÀÌ ³Ê¹« ³³ÀÛÇϸç ÆÛºô¸®¾ð °¢ ¥á´Â ³Ê¹« ÀÛ´Ù. ÆÛºô¸®¾ð °¢ÀÌ ³Ê¹« Å« ´Ù¸¥ ±Ø´ÜÀûÀÎ °Í (¥á = 48°), (±×¸² 5c)´Â ƯÈ÷ °üºÎ»ç¸éµé·ÎºÎÅÍ Áß½ÉÀ» ÇâÇÏ¿© ¹Ý»ç ±¤µéÀÇ ÁýÁßÈ­¸¦ ³ªÅ¸³½´Ù. ÀÌ °æ¿ì¿¡¼­ÀÇ °üºÎ»ç¸é ¹Ý»ç´Â ¾ÆÁÖ ºó¾àÇÏ´Ù; µ¹¿¡ ºÒ²ÉÀÌ ¾ø´Ù. ¸ðµç ´Ù¸¥ ¿¬¸¶°¡°øµéÀÇ È¿°úµéÀº µÎ °³ÀÇ ±Ø´Üµé »çÀÌ¿¡ ÀÖ¾î¾ß ÇÑ´Ù´Â °ÍÀº ½±°Ô »ó»óµÈ´Ù. ¸í¹éÈ÷, °¡Àå È¿°úÀûÀÎ ¿¬¸¶°¡°øÀº ±×¸² 5b¿¡ Ç¥ÇöµÈ °ÍÀ̸ç, ¸ðµç ¹æ»ç´Â ÃæºÐÈ÷ °üÂûÀÚ¸¦ ÇâÇÏ¿© ¹ø½°Å¸®°Ô²û µ¹·ÎºÎÅÍ ³ª¿Â´Ù.




±×¸² 5cÀÇ ´Ù°¢¿øÇü ¿¬¸¶°¡°øÀ¸·ÎºÎÅÍ ±×¸² 5a·ÎÀÇ ÀüÀÌ´Â Àå¹Ì²ÉÀÌ Á¡Â÷ ÇǾ´Â °Í°°ÀÌ º¸ÀδÙ. ±×¸² 5c¿¡¼­ Àå¹Ì ²ÉÀº ¾ÆÁ÷ ÇǾÁö ¾Ê¾Ò´Ù; Àå¹Ì "²É ºÀ¿ì¸®"¸¦ Áö´Ï°í ÀÖ´Ù. ±×·± ²É ºÀ¿ì¸®´Â È®½ÇÈ÷ ´Ù¼ÒÀÇ ¸Å·ÂÀûÀÎ ¸ð½ÀÀ» Áö´Ï°í ÀÖÁö¸¸, ¾ÆÁ÷ ¿Ï¼ºµÇÁö ¾Ê¾Ò´Ù´Â ´À³¦À» Áö´Ñ´Ù; ¿ì¸° ¾ÆÁ÷ ÇÇÁö ¾ÊÀº "²É"ÀÇ ¿ÏÀüÇÑ ¾Æ¸§´Ù¿òÀ» ±â´ëÇÑ´Ù. ÀÌ°ÍÀÌ ±×¸² 5b¿¡ ÀÖ´Â °Í, ¾Æ¸§´ä°Ô ÇÉ Àå¹Ì²ÉÀÌ´Ù. ±×¸®°í ³ª¼­, Àå¹Ì²ÉÀº Á¡Â÷ ½Ãµé¾î(±×¸² 5a), ¸¹Àº ÀÙµéÀÌ ¶³¾îÁ® ¸Å·ÂÀûÀÎ ¾Æ¸§´Ù¿òÀÌ »ç¶óÁø´Ù. ÀÌ ºñ±³¸¦ ¸¶À½¿¡ »õ±â¸é, ´Ù°¢¿øÇü ¿¬¸¶°¡°ø ´ÙÀ̾î¸ÕµåÀÇ ÁÖ¿ä °¢µéÀÇ Á߿伺Àº ¶Ñ·ÇÇØÁø´Ù.



¿©±â¿¡¼­ ³íÀÇµÈ ºê¸±¸®¾ðÆ®ÀÇ ±âº»ÀûÀÎ °í¾È°ú ±× °á°úÀûÀÎ È¿°ú´Â ½ºÅ¸ ÆнÃÆ®µé°ú »óºÎ¿Í ÇϺΠȯ»óºÎ ÆнÃÆ®µéÀ» ´õÇÏ¹Ç·Î½á ¹°·Ð ¼öÁ¤µÈ´Ù. ÀÌ ¸ðµç Ãß°¡ÀÇ ÆнÃÆ®µéµµ ¿ª½Ã ºê¸±¸®¾ðÆ® ¹ýÄ¢ ½Ä(6)À» µû¸¥´Ù. ½ºÅ¸ ÆнÃÆ®µéÀº º¸´Ù ÀÛÀº ¥â-°¢À» Áö´Ñ °üºÎ»ç¸éµéÀ» Ç¥ÇöÇϹǷÎ, ´õ ¸¹Àº ¹é»ö±¤ ¹Ý»ç¸¦ ³ªÅ¸³½´Ù. º¸´Ù Å« ¥â¸¦ Áö´Ñ »óºÎ-ȯ»óºÎ ÆнÃÆ®µéÀº µ¹¿¡ ´õ¿í ¸¹Àº ºÒ²ÉÀ» ´õÇϸç, ÇϺÎ-ȯ»óºÎ ÆнÃÆ®µéÀº ¼öÁ¤µÈ ÆÛºô¸®¾ð °¢À» Áö´Ñ Ãß°¡ÀûÀÎ ÆÛºô¸®¾ð ÆнÃÆ®µéÀ» Ç¥ÇöÇϹǷÎ, °¡´ÉÇÑ ¹Ý»çµéÀÇ º¯È­¼ºÀ» °­È­ÇÏ´Ù. °¢ º¯È­ÀÇ È¿°ú¿Í, µû¶ó¼­ ¸ðµç ÇüÅÂÀÇ ÆнÃÆ®µéÀ» Æ÷ÇÔÇÏ°í ÀÖ´Â ´Ù°¢¿øÇü ¿¬¸¶°¡°ø ´ÙÀ̾î¸ÕµåÀÇ Àüü È¿°ú´Â ºê¸±¸®¾ðÆ® ½ÄÀ¸·Î °è»êµÇ°í ±×¸² 5¿¡¼­¿Í °°Àº ¹æ¹ýÀ¸·Î ±×·ÁÁú ¼ö ÀÖ´Ù.



ºê¸±¸®¾ðÆ® ¹ýÄ¢ÀÇ Àû¿ëÀº ´ÙÀ̾î¸Õµå¿¡¸¸ Á¦ÇѵÇÁö ¾Ê´Ù´Â °ÍÀ» º¼ ¼ö ÀÖ´Ù; ½ÉÁö¾î À¯¸®¿Í Ç÷¡½ºÆ½À» Æ÷ÇÔÇÑ ¸ðµç Åõ¸í¿ø¼®µé¿¡ Àû¿ëÇÒ ¼ö ÀÖ´Ù. ÀÌ ¹ýÄ¢ÀÇ ÀϹÝÀûÀÎ À¯È¿¼º°ú ¿ø¼®ÀÇ ±¤ÈÖµµ(brilliancy)¶ó°í ÇÏ´Â °Íµµ ¿ª½Ã ºê¸±¸®¾ðÆ® ¹ýÄ¢À¸·ÎºÎÅÍ À¯µµµÉ ¼ö ÀÖ´Ù.


¾î¶°ÇÑ °æ¿ì¶óµµ, ´ÙÀ̾î¸ÕµåÀÇ ´Ù°¢¿øÇü ¿¬¸¶°¡°øÀº ½ÇÁ¦·Î ÇÁ¸®Áò, ·»Áî, ¹Ý»ç°æ ¶Ç´Â ±×µéÀÇ Á¶ÇÕ°ú °°Àº Ưº°ÇÑ ±¤Àû µµ±¸¶ó´Â °ÍÀ» ¸¶À½¿¡ »õ°Ü µÎ¾î¾ß ÇÑ´Ù. ±×·± ¸ðµç µµ±¸µéÀÇ È¿°ú´Â ¾ö°ÝÇÑ ÀÚ¿¬ ¹ýÄ¢µéÀÇ °á°úÀÌ´Ù. ±× µÚ¿¡ °¨Ãß¾îÁø ½Åºñ´Â ¾ø´Ù. ´Ù°¢¿øÇü(brilliant)¿¬¸¶°¡°øÀÇ ¿¹¼úÀº ¿¬¸¶°¡°ø°¡ÀÇ ºñ¹Ð·Î °¨Ãß¾îÁø ½ÅºñÀÇ °ø½Ä¿¡ ÀÇÁ¸ÇÏ´Â °ÍÀÌ ¾Æ´Ï´Ù. ±×°¡ âÁ¶ÇÏ°í ÀÖ´Â ±¤ÇРü°è¸¦ ´Ù½º¸®´Â ÀÚ¿¬ÀÇ ¹ýÄ¢, ºê¸±¸®¾ðÆ®¸¦ ¾Ë°í ÀÖ°í ±×µé¿¡ º¸´Ù ÃÖÀûÈ­ÇÏ°íÀÚ Á¢±ÙÇÏ´Â ¿¬¸¶°¡°ø°¡ÀÇ °³ÀÎÀûÀÎ ±â·®¿¡ ´Þ·ÁÀÖ´Ù.



¾î¶² ¿¬¸¶°¡°ø¼®ÀÇ È¿°ú¸¦ °áÁ¤ÇÏ´Â ¹°¸®ÀûÀÎ ¿ø¸®¸¦ ¸íÈ®ÇÏ°Ô ÇÏ°íÀÚ ÇÏ´Â °ÍÀÌ ÀÌ ³í¹®ÀÇ °¡Àå Áß¿äÇÑ ÀǵµÀÌ´Ù. ·»Á À§ÇÑ ·»Áî°ø½ÄÀ̶ó´Â °ÍÀº ´Ù°¢¿øÇü ¿¬¸¶°¡°ø ´ÙÀ̾î¸Õµå¸¦ À§ÇÑ ºê¸±¸®¾ðÆ®(brilliant) ½ÄÀÌ´Ù.

 11. ´Ù°¢¿øÇü ¿¬¸¶°¡°ø ´ÙÀ̾î¸ÕµåÀÇ ±¤ÇÐ(ÎÃùÊ) (The Optics of Brilliant-Cut Diamonds)

 °ü·Ã ÀÚ·á >>> °¡°ø ¹× ó¸® >>>

°æ±âµµ ±¤Áֽà ¿ÀÆ÷·Î 538-7 | TEL: +82 (0)31 766 0862 | FAX: +82 (0)31 766 0863

Copyright ¨Ï 2002~2025 ÁªÅ×Å© (gemtec.co.kr) All Rights Reserved.